A systematic review of the effects of airborne microplastic contamination on human lungs

Prehatin T. Ningrum, Soedjajadi Keman, Lilis Sulistyorini, I K. Sudiana, Agus Hidayat, Abul H.S. Negoro, Hasrah Junaidi, Kustin Kustin

Abstract

Microplastics are the result of degradation of plastic waste in nature and contain various toxicological effects. It is estimated that humans inhale around 100,000 fine particles of plastic every day. The aim of this research is to determine whether exposure to microplastics in the air has an impact on human lungs. Data search in this study used four electronic databases, namely Scopus, Web of Science, Science Direct, and PubMed. 15 articles were included for analysis in this systematic review following a screening process of titles, abstract, and full texts that was based on clearly defined inclusion and exclusion criteria. Risk assessment to reduce data bias using the JBI Critical Appraisal Tool. Our findings from this systematic review show that airborne microplastic contamination has a negative effect on human lungs. It is recommended that government policies should be formed regarding the use of plastics so as to reduce airborne contamination

Full Text:

PDF

References

Jan Kole P, Löhr AJ, Van Belleghem FGAJ and Ragas AMJ.

Wear and tear of tyres: A stealthy source of

microplastics in the environment. Int J Environ Res

Public Health. 2017;14(10).

doi:10.3390/ijerph14101265

Sommer F, Dietze V, Baum A, Sauer J, Gilge S, Maschowsk

C and Gieré R. Tire abrasion as a major source of

microplastics in the environment. Aerosol Air Qual

Res. 2018;18(8):2014-2028.

doi:10.4209/aaqr.2018.03.0099

Evangeliou N, Grythe H, Klimont Z, Heyes C, Eckhardt S,

Lopez-Aparicio S and Stohl A. Atmospheric transport

is a major pathway of microplastics to remote regions.

Nat Commun. 2020;11(1). doi:10.1038/s41467-020-

-9

Prata JC. Airborne microplastics: Consequences to human

health? Environ Pollut. 2018;234:115-126.

doi:10.1016/j.envpol.2017.11.043

Bergmann M, Gutow L and Klages M. Marine anthropogenic

litter. Mar Anthropog Litter. Published online 2015:1-

doi:10.1007/978-3-319-16510-3

Dris R, Gasperi J, Rocher V, Saad M, Renault N and Tassin

B. Microplastic contamination in an urban area: A

case study in Greater Paris. Environ Chem.

;12(5):592-599. doi:10.1071/EN14167

Koelmans AA, Redondo-Hasselerharm PE, Mohamed Nor

NH and Kooi M. Solving the Nonalignment of

Methods and Approaches Used in Microplastic

Research to Consistently Characterize Risk. Environ

Sci Technol. 2020;54(19):12307-12315.

doi:10.1021/acs.est.0c02982

Wright SL and Kelly FJ. Plastic and Human Health: A Micro

Issue? Environ Sci Technol. 2017;51(12):6634-6647.

doi:10.1021/acs.est.7b00423

Friot D and Boucher J. Primary Microplastics in the Oceans |

IUCN Library System.; 2017.

https://portals.iucn.org/library/node/46622

Dris R, Gasperi J, Saad M, Mirande C and Tassin B.

Synthetic fibers in atmospheric fallout: A source of

microplastics in the environment? Mar Pollut Bull.

;104(1-2):290-293.

doi:10.1016/j.marpolbul.2016.01.006

Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M,

Langlois V and Tassin B. A first overview of textile

fibers, including microplastics, in indoor and outdoor

environments. Environ Pollut. 2017;221:453-458.

doi:10.1016/j.envpol.2016.12.013

Liebezeit G and Liebezeit E. Origin of synthetic particles in

honeys. Polish J Food Nutr Sci. 2015;65(2):143-147.

doi:10.1515/pjfns-2015-0025

Uogintė I, Vailionytė A, Skapas M, Bolanos D, Bagurskienė

E, Gruslys V, Aldonytė

and Byčenkienė S. New evidence of the presence of

micro- and nanoplastic particles in bronchioalveolar

lavage samples of clinical trial subjects. Heliyon.

;9(9):0-5. doi:10.1016/j.heliyon.2023.e19665

Chen YC, Chen KF, Lin KYA, Tsang YF, Hsu YF and Lin

CH. Evaluation of the pulmonary toxicity of PSNPs

using a Transwell-based normal human bronchial

epithelial cell culture system. Sci Total Environ.

;895(May):165213.

doi:10.1016/j.scitotenv.2023.165213

Yang S, Zhang T, Ge Y, Cheng Y, Yin L, Pu Y, Chen Z

and Liang G. Sentinel supervised lung-on-a-chip: A

new environmental toxicology platform for

nanoplastic-induced lung injury. J Hazard Mater.

;458(April):131962.

doi:10.1016/j.jhazmat.2023.131962

Zhang H, Zhang S, Duan Z and Wang L. Pulmonary

toxicology assessment of polyethylene terephthalate

nanoplastic particles in vitro. Environ Int.

;162(February):107177.

doi:10.1016/j.envint.2022.107177

Xu M, Halimu G, Zhang Q, Song Y, Fu X, Li X, Li Y and

Zhang H. Internalization and toxicity: A preliminary

study of effects of nanoplastic particles on human lung

epithelial cell. Sci Total Environ. 2019;694:133794.

doi:10.1016/j.scitotenv.2019.133794

Alzaben M, Burve R, Loeschner K, Møller P and Roursgaard

M. Nanoplastics from ground polyethylene

terephthalate food containers: Genotoxicity in human

lung epithelial A549 cells. Mutat Res - Genet Toxicol

Environ Mutagen. 2023;892(July):0-2.

doi:10.1016/j.mrgentox.2023.503705

Yang S, Cheng Y, Chen Z, Liu T, Huang S, Yin L, Pu Y and

Liang G. In vitro evaluation of nanoplastics using

human lung epithelial cells, microarray analysis and

co-culture model. Ecotoxicol Environ Saf.

;226(October):112837.

doi:10.1016/j.ecoenv.2021.112837

Laganà A, Visalli G, Facciolà A, Celesti C, Iannazzo D and

Di Pietro A. Uptake of Breathable Nano- and MicroSized Polystyrene Particles: Comparison of Virgin

and Oxidised nPS/mPS in Human Alveolar Cells.

Toxics. 2023;11(8). doi:10.3390/toxics11080686

Dong C Di, Chen CW, Chen YC, Chen HH, Lee JS and Lin

CH. Polystyrene microplastic particles: In vitro

pulmonary toxicity assessment. J Hazard Mater.

;385(September 2019):121575.

doi:10.1016/j.jhazmat.2019.121575

Amato-Lourenço LF, Carvalho-Oliveira R, Júnior GR, dos

Santos Galvão L, Ando RA and Mauad T. Presence of

airborne microplastics in human lung tissue. J Hazard

Mater. 2021;416(April).

doi:10.1016/j.jhazmat.2021.126124

Jenner LC, Rotchell JM, Bennett RT, Cowen M, Tentzeris V

and Sadofsky LR. Detection of microplastics in

human lung tissue using μFTIR spectroscopy. Sci

Total Environ. 2022;831(March):154907.

doi:10.1016/j.scitotenv.2022.154907

Bengalli R, Zerboni A, Bonfanti P, Saibene M, Mehn

D, Cella C, Ponti J, Spina RL and Mantecca P.

Characterization of microparticles derived from waste

plastics and their bio-interaction with human lung

A549 cells. J Appl Toxicol. 2022;42(12):2030-2044.

doi:10.1002/jat.4372

Chen C, Liu F, Quan S, Chen L, Shen A, Jiao A, Qi

H and Yu G. Microplastics in the Bronchoalveolar

Lavage Fluid of Chinese Children: Associations with

Age, City Development, and Disease Features.

Environ Sci Technol. 2023;57(34):12594-12601.

doi:10.1021/acs.est.3c01771

Shi Q, Tang J, Wang L, Liu R and Giesy JP. Combined

cytotoxicity of polystyrene nanoplastics and phthalate

esters on human lung epithelial A549 cells and its

mechanism. Ecotoxicol Environ Saf.

;213:112041. doi:10.1016/j.ecoenv.2021.112041

Abbasi S and Turner A. Human exposure to microplastics: A

study in Iran. J Hazard Mater. 2021;403(June

:123799. doi:10.1016/j.jhazmat.2020.123799

Prokić MD, Radovanović TB, Gavrić JP and Faggio C.

Ecotoxicological effects of microplastics:

Examination of biomarkers, current state and future

perspectives. TrAC - Trends Anal Chem.

;111:37-46. doi:10.1016/j.trac.2018.12.001

Zhang D, Huang G, Yin X and Gong Q. Residents’ waste

separation behaviors at the source: Using SEM with

the theory of planned behavior in Guangzhou, China.

Int J Environ Res Public Health. 2015;12(8):9475-

doi:10.3390/ijerph120809475

Batool I, Qadir A, Levermore JM and Kelly FJ. Dynamics of

airborne microplastics, appraisal and distributional

behaviour in atmosphere; a review. Sci Total Environ.

;806:150745.

doi:10.1016/j.scitotenv.2021.150745

Fan W, Salmond J., Dirks K., Cabedo Sanz P, Miskelly G

and Rindelaub JD. Evidence and mass quantification

of atmospheric microplastics in a Coastal New

Zealand City. Env Sci Technol. 2022;56:17556–

doi:https://doi.org/10.1021/acs.est.2c05850

Torres-Agullo A, Karanasiou A, Moreno T and Lacorte S.

Airborne microplastic particle concentrations and

characterization in indoor urban microenvironments.

Environ Pollut. 2022;308(June):119707.

doi:10.1016/j.envpol.2022.119707

Yang S, Cheng Y, Liu T, Huang S, Yin L, Pu Y and Liang

G. Impact of waste of COVID-19 protective

equipment on the environment, animals and human

health: a review. Environ Chem Lett.

;20(5):2951-2970. doi:10.1007/s10311-022-

-5

Tokunaga Y, Okochi H, Tani Y, Niida Y, Tachibana

T, Saigawa K, Katayama K, Moriguchi S, Kato T and

Hayama S. Airborne microplastics detected in the

lungs of wild birds in Japan. Chemosphere.

;321(November 2022):138032.

doi:10.1016/j.chemosphere.2023.138032

Jenner LC, Rotchell JM, Bennett RT, Cowen M, Tentzeris V

and Sadofsky LR. Detection of microplastics in

human lung tissue using μFTIR spectroscopy. Sci

Total Environ. 2022;831(December 2021):154907.

doi:10.1016/j.scitotenv.2022.154907

Baeza-Martínez C, Olmos S, González-Pleiter M, LópezCastellanos J, García-Pachón E, Masiá-Canuto M,

Hernández-Blasco L, Bayo J First evidence of

microplastics isolated in European citizens’ lower

airway. J Hazard Mater. 2022;438(April).

doi:10.1016/j.jhazmat.2022.129439

Atis S, Tutluoglu B, Levent E, Ozturk C, Tunaci A, Sahin

K, Saral A, Oktay I, Kanik A and Nemeryet B. The

respiratory effects of occupational polypropylene

flock exposure. Eur Respir J. 2005;25(1):110-117.

doi:10.1183/09031936.04.00138403

Soutar C, Copland L, Thornley P, Hurley F, Ottery J, Adams

W and Bennett B. An epidemiologic study of

respiratory disease in workers exposed to

polyvinylchloride dust. Chest. 1981;80(suppl.1):644-

doi:10.1378/chest.80.1_supplement.60s

Lu K, Lai KP, Stoeger T, Ji S, Lin Z , Lin X, Chan TF, Fang

JKH, Lo M, Gao L, Qiu C , Chen S, Chen G, Li L

and Wang L. Detrimental effects of microplastic

exposure on normal and asthmatic pulmonary

physiology. J Hazard Mater.

;416(January):126069.

doi:10.1016/j.jhazmat.2021.126069.

Refbacks

  • There are currently no refbacks.